• Sonuç
  • İçerik
  • Örnekler

Sonuç

Sonuç ve çözüm adımları burada gösterilecektir.

Matris ve Vektör İşlemleri

Matrisin Determinantı Nasıl Hesaplanır?

\(A_{n \times n}\) kare matrisinin determinantı, C kofaktör matrisi ve M minör matrisi olmak üzere: $$\det(A_{n \times n}) = \sum_{j=1}^{n} A_{ij}C_{ij} = \sum_{j=1}^{n}A_{ij}(-1)^{i+j}M_{ij}$$ olarak tanımlanır.

İkiye iki matrisin determinantı $$\det(A_{2 \times 2}) = \begin{vmatrix}a & b \\ c & d\end{vmatrix} = a . d - b . c$$ olarak hesaplanır.

Üçe üç matrisin determinantı $$\begin{align*} \det(A_{3 \times 3}) &= \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix} \\ &= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{31} a_{22} a_{13} - a_{32} a_{23} a_{11} - a_{33} a_{21} a_{12} \end{align*}$$ olarak hesaplanır. Bu kural Sarrus Kuralı olarak bilinir.

Örnekler

Arfulus'un nasıl çalıştığını görmek için bir örneğe tıklayın!

  • $$\begin{pmatrix}4&9&2\\3&5&7\\8&1&6\end{pmatrix}^{2}+\begin{pmatrix}2&7&6\\9&5&1\\4&3&8\end{pmatrix}^{-1}+\begin{pmatrix}2&9&4\\7&5&3\\6&1&8\end{pmatrix}^{T}$$
  • $$\begin{vmatrix}4&9&2\\3&5&7\\8&1&6\end{vmatrix}+\begin{Vmatrix}4&9&2\\3&5&7\\8&1&6\end{Vmatrix}$$